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The problem of synthesizing multi-programme controls is considered for a bilinear time-dependent control system with multi- 
dimensional input. An existence and representation theorem is proved for a control under which the initial system is capable of 
performing a given set of programmed motions, each of which is asymptotically stable in Lyapunov’s sense. 0 2001 Elsevier Science 
Ltd. All rights reserved. 

Previous researchers [l, 21 have considered the problem of representing the right-hand sides of systems 
of differential equations with a prescribed finite family of solutions, as well as the problem of synthesizing 
controls that realize a given set of programmed motions. Particular attention has been given [2] to the 
representation of such controls in linear time-independent control systems. Application of the results 
has been illustrated [l, 21 with reference to the problems of controlling mechanical systems described 
by Lagrange equations of the second kind and controlling the motion of charged particles in an 
electromagnetic field. 

It will be shown below that this approach can be extended to the class of bilinear control systems, 
which yield more flexible approximations of non-linear systems than linear systems. One method of 
constructing bilinear approximations has been proposed [3], and the case of a bilinear time-independent 
system with one scalar control has been considered [4]. 

1. FORMULATION OF THE PROBLEM 

We consider a bilinear time-dependent control system 

i = A(r)+ i Bi(t)ui 
c 

x+F(t) (1.1) 
i=l 

where x is the n-dimensional phase state vector, ul, . . . , u, are scalar controls, A(t), Bi(t) (i = 1, . . . , r) 
are real continuous IZ x n matrices whose elements are bounded fort 3 0 and F(t) is a real continuous 
vector function defined for t E (--DO, +=). 

Consider the vector of controls u = (ui, . . . , u,)? Let us assume that programmed controls ut(t), . . . , 
q,,(t) have been constructed for system (l.l), as well as corresponding programmed motions x1(t), . . . , 
x,,,(t). The number N of programmed motions is unrelated to the dimensionality of system (1.1) or to 
that of the space of controls. 

No consideration will be given here to methods of constructing such controls. We merely remark that 
every programmed control ui(t) and programmed motion x&t) are constructed as the solution of a certain 
boundary-value problem, with different boundary conditions for eachj = 1, . . . , N. Thus, substitution 
of the programmed control uj(t) = (u.t(t), . . . 

.h 
, Ujr(t))T and corresponding programmed motions r+(t) 

into system (1.1) yields an identity wtt respect to t in the interval where these functions are defined: 

‘j c 3 (t)Xj + F(r), 3 (t) = A(t) + i Bi(t)ujj (t) 
i=l 

(1.2) 

Problem. It is required to construct a control 

tPrikl. Mat. Mekh., Vol. 64, No. 6, pp. 929-932, 2000. 

u = u(x. r) 
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(1.3) 
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that will implement given programmed motions xi(t), . . . , xN(t) and guarantee their asymptotic stability 
in Lyapunov’s sense. 

2. A THEOREM ON THE REPRESENTATION OF 
A STABILIZING CONTROL 

Theorem 1. Suppose the following conditions hold: 
1. the programmed motions xi(r), . . . , x,,,(t) of system (1.1) under controls u&), . . . , UN(~) are distinct, 
i.e. 

j$IIXi-Xj II>O, i#j 

2. the auxiliary linear control systems 

9; = q (r)Yj + Qj (t)y (2-l) 
where 

Qj (‘I= (B, (t)Xj (t), . . .t B,(t)Xj (t)) (2.2) 
are stabilized by controls 

Vj = Cj (f)Yj (2.3) 

where Yj = x - Xi(t), vj = u - uj(t) are the deviations from the programmed motions and programmed 
controls, respectively. 

Then a control (1.3) exists that implements the programmed motions xi(t), . . . , xN(t) in such a way 
that each of them is asymptotically stable in Lyapunov’s sense. 

Before proceeding to the proof, we present a few previously known definitions and propositions to 
which we shall refer. 

Consider the auxiliary linear control system 

x = P(r)x + q(t)u (2.4) 

The elements of the n + n matrix P(t) and n-dimensional vector q(t) are real functions which are 
continuous for t 2 0, x is the n-dimensional phase state vector and u is a scalar control, 

Theorem 2 [5]. Suppose P(t) E Cg$, 
and S = (q(t), Dq(t), . . . , @q(t)) 

+ -), q(t) E C12TJ, + -), D = P(t) - E,,d/& is a differentiation operator 
is a Lyapunov matrix. Then system (2.4) can be transformed to 

canonical Frobenius form and the control u = rn’ x can be so chosen that the closed system 

x = (P(r) + q(r)djx 

is regular (reducible) and has prescribed characteristic indices. 

Definition 1 [6]. A square matrix S(f) is called a Lyapunov matrix if 
1. S(t) E Cf,[O, + _ 
2. the matrices S(t 1 and S(t) are bounded for t E [0, +-); 
3. the absolute value of the determinant of S(t) is non-zero, uniformly in t 3 0. 

Remark 1. It has been shown [5] that Theorem 2 remains valid for linear systems with r-dimensional 
control also. The proof of the theorem contains a constructive algorithm for constructing such controls. 

Definition 2. A linear control system for which the conditions of Theorem 2 are satisfied will be called 
stabilizable. 

Remark 2. Condition 2 of Theorem 1 means that every system (2.1) is stabilizable in the sense of 
Definition 2 and that a stabilizing control (2.3) has been constructed. 

Proof of Theorem 1. Consider a control (1.3) in the form 

U(X,t)' 2 L Uj +Cj(f)(X-xj)-2uj(r) 2 (Xj -x;)(x-Xj) 

j=l i=l.rtj (Xj - Xi)2 1 pi (x* t) (2.5) 
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where 

Pi(x,r)= fi tx-xi)2 
i=l. i+j Cxj - xi j2 (2.6) 

Control (2.5) and scalar functions (2.6) satisfy the following obvious identities 

U(Xj (t), I) E Uj (t); pj (Xi, f) E 0, i # j; pj (Xj, t) G 1 

By virtue of these properties, system (l.l), closed by control (2.3, (2.6) has the given programmed 
motions x1(t), . . . , xN(t), that is, it will move in accordance with one of them provided the appropriate 
initial data are precisely specified. 

We will now prove that the programmed motions of the closed system are asymptotically stable. 
Let ui(x, t), . . . , u,(x, t) denote the components of the vector u(x, t). Consider an arbitrary motion 

x&) (k = 1, . . . , IV) and construct the corresponding system for variations. For the variation 
Y,&) = x(t) - X/G) we obtain the system of equations 

A(I)+ i Bi(t)uitYk +Xkv ‘) Yk + 
i=l 

+ i B;(f)Ui(J’k +xk, r) Xk - i Bi(r)Xk(r)ui(Xk* r) ( i=l 1 i=l 
(2.7) 

We single out a linear approximation of system (2.7). To do this we find a representation for the 
functions uj(yk - xk, t). Using the form of COntr01 (2.5), we obtain 

U(‘jk +Xk,f)= g (Uj(r)+C,(')(Yk+xk -xj)-2Uj(r)~k)Pj(Yk+xk~r) 
j=l 

(2.8) 

sik = ~ “-“2 (yk+xk-xj) 

i=l.itl Cxj -xi) 

It has been shown [4] that for j f k the order of the functions pj(yk + Q, t) 0’ = 1, . . . , A’) in the 
components of the vector Yk is at least two. Consequently, the expression on the right of (2.8) contains 
terms linear in Yk only forj = k. Consider the term with j = k. After reduction, it can be written as 

uk tt) + C, @)Yk + uk 

bk = 2(C, (r)Yk - 2u, (t)s, )$ + (u,(f) + C, (t)Yk - 2u, (I)$ )h, (Y,, ) 

N 

sk= c 
xk -xi 

r=l,i#k (Xk -Xi) 
2 yk 

(2.9) 

where we have used the representation of the functionsPk(Yk + xk, t) from [4], and the order of the 
function hk(Yk) in the components of the vector Yk is at least two. 

It is obvious that the order of the components of the vector iik in Yk is also at least two. As a result, 
Eq. (2.8) becomes 

u(Y, +x,,t)=uk(f)+Ck(r)Yk +i, 

uk =fik + j=,:*k(Uj(r)fcj (f)(Yk +Xk -xj)-2uj (f)sjk)q(yk +xkvr) 

(2.10) 

Using this representation on the right-hand side of system (2.7) and taking notation (1.2) (2.2) into 
account, after some reduction, we write the system of equations for variations for the programmed 
motion xk(t) in the final form 

Y, = (pk (t) + Qk (IlC, (t))Yk + g, (Yk ) 

2 Bi(t)(cki(t)Yk +;ki) Yk + i Bi(r)xk(t)u^ki 
i=l i=l 

(2.11) 
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where Liki are the components of the vector tik and ck(t)yk is the scalar product of the i-th row of Q(t) 
and the vector yk; i = 1, . . . , I-. 

By the second condition of Theorem 1, all the systems (2.1) are stabilizable. In that case, by Theorem 
2, for all k = 1, . . . , N r x n matrices C,(t) exist such that the linear systems 

y, = (Q 0) + Qk (& G))Y~ 

are asymptotically stable in Lyapunov’s sense. An algorithm constructing such matrices has been 
described [5]. 

Suppose all the matrices Ck(t) (k = 1, . . . , N) have been constructed. By the theorem of stability in 
the first approximation [7] for C,(t) = Ck(t), all the systems (2.11) are asymptotically stable in Lyapunov’s 
sense. Consequently, control (2.5) (2.6), where Cj(t) = Ej(t), guarantees that system (1.1) will have 
asymptotically stable programmed motions x,(t), . . . , xiy(t). The theorem is proved. 

This research was supported financially by the Ministry of Education of the Russian Federation. 
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